The important tumor suppressor role of PER1 in regulating the cyclin–CDK–CKI network in SCC15 human oral squamous cell carcinoma cells

نویسندگان

  • Xiao-Juan Fu
  • Han-Xue Li
  • Kai Yang
  • Dan Chen
  • Hong Tang
چکیده

BACKGROUND Accumulating evidence suggests that the abnormal expression of the circadian clock gene PER1 is closely related to the development and progression of cancer. However, the exact molecular mechanism by which the abnormal expression of PER1 induces carcinogenesis is unclear. This study was conducted to investigate the alterations in downstream cell cycle genes, cell cycle distribution, cell proliferation, apoptosis, and in vivo tumorigenicity in SCC15 oral squamous cell carcinoma cells after PER1 downregulation. MATERIALS AND METHODS A stable SCC15 cell line was established to constitutively express shRNA targeting PER1. Quantitative real-time polymerase chain reaction (PCR) and Western blot analyses were conducted to estimate PER1 mRNA and protein expression. The expression of PER1, P53, CyclinD1, CyclinE, CyclinA2, CyclinB1, cyclin-dependent kinase (CDK) 1, CDK2, CDK4, CDK6, P16, P21, WEE1, and CDC25 mRNA was detected by quantitative real-time PCR. Cell cycle distribution, cell proliferation, and apoptosis were determined by flow cytometry. The in vivo tumorigenicity of SCC15 cells was evaluated in female BALB/c nu/nu mice. RESULTS PER1 downregulation resulted in significantly increased mRNA expression levels of CyclinD1, CyclinE, CyclinB1, CDK1, and WEE1 (P<0.05), and significantly decreased mRNA expression levels of P53, CyclinA2, P16, P21, and CDC25 (P<0.05) compared to control cells. Additionally, PER1 downregulation led to significantly fewer cells in S phase (P<0.05), but significantly more cells in G2/M phase (P<0.05) compared to the control group. After PER1 downregulation, the cell proliferation index was significantly higher (P<0.05), and the apoptotic index was significantly lower (P<0.05). The in vivo tumorigenicity of SCC15 cells was significantly enhanced by PER1 downregulation (P<0.05). CONCLUSION PER1 is an important tumor suppressor gene which acts by regulating the Cyclin-CDK-cyclin-dependent kinase inhibitor regulatory network. An in-depth characterization of this gene may further illuminate the molecular mechanisms responsible for the development and progression of cancer, thus providing novel molecular targets for cancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The clock gene PER1 suppresses expression of tumor-related genes in human oral squamous cell carcinoma

Abnormal expression of the clock gene PER1 is highly correlated with carcinogenesis and the development of malignant tumors. Here, we designed short hairpin RNAs (shRNAs) to effectively knock down PER1 in SCC15 human oral squamous cell carcinoma cells. shRNA-mediated PER1 knockdown promoted SCC15 cell growth, proliferation, apoptosis resistance, migration and invasion in vitro. PER1 knockdown a...

متن کامل

The clock gene PER1 plays an important role in regulating the clock gene network in human oral squamous cell carcinoma cells

The various clock genes in normal cells, through their interaction, establish a number of positive and negative feedback loops that compose a network structure. These genes play an important role in regulating normal physiological activities. The expression of clock gene PER1 is decreased in many types of cancer. PER1 is highly correlated with the initiation and progression of cancer by regulat...

متن کامل

A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells

Clock genes are the core of the circadian rhythms in the human body and are important in regulating normal physiological functions. To date, research has indicated that the clock gene, period circadian clock 2 (PER2), is downregulated in numerous types of cancer, and that it is associated with cancer occurrence and progression via the regulation of various downstream cell cycle genes. However, ...

متن کامل

E-cadherin Promoter Methylation Comparison and Correlation with the Pathological Features of the Squamous Cell Carcinoma of Esophagus in the High Risk Region

E-cadherin is among tumor suppressor genes which mostly subjects to the down-regulation in squamous cell carcinoma of esophagus (SCCE). The gene is tightly associated with the tumor invasion and metastasis in multiple human cancers, especially SCCE. CpG islands’ methylation in the promoter region of E-cadherin is among the mechanisms that have been suggested for the E-cadherin silencing, howeve...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016